Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Expression and purification of recombinant thermostable DNA-binding protein Sso7d

https://doi.org/10.29235/1561-8331-2023-59-3-225-233

Abstract

The Sso7d protein has exceptional structural stability and the ability to bind highly specifically to DNA, which makes the protein a promising module for creating fusion proteins and test systems. Sso7d is a part of fusion high-fidelity DNA polymerases capable of carrying out the polymerase chain reaction even in the presence of PCR inhibitors. Application of faster, simpler, and more efficient method for protein production will significantly reduce the cost of creating biosensors and conducting analyzes. This paper describes a new efficient method for obtaining recombinant Sso7d protein with a high degree of purity without using affinity chromatography.

About the Authors

A. B. Sachanka
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Sachanka Antos B. – Junior Researcher, Postgraduate Student

5/2, Kuprevich Str., 220141, Minsk



M. Trawkina
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Trawkina Maria – Researcher

5/2, Kuprevich Str., 220141, Minsk



V. V. Shchur
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Shchur Veronika V. – Researcher

5/2, Kuprevich Str., 220141, Minsk



S. A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Usanov Sergei A. – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor

5/2, Kuprevich Str., 220141, Minsk



A. V. Yantsevich
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Yantsevich Aliaksei V. – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory

5/2, Kuprevich Str., 220141, Minsk



References

1. Baumann H., Knapp S., Lundbäck T., Ladenstein R., Härd T. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nature Structure Biology, 1994, vol. 1, no. 11, pp. 808‒819. https://doi.org/10.1038/nsb1194-808

2. Luscombe N. M., Austin S. E., Berman H. M., Thornton J. M. An overview of the structures of protein-DNA complexes. Genome Biology, 2000, vol. 1, no. 1. https://doi.org/10.1186/gb-2000-1-1-reviews001

3. Consonni R., Santomo L., Fusi P., Tortora P., Zetta L. A single-point mutation in the extreme heat- and pressure-resistant sso7d protein from sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core. Biochemistry, 1999, vol. 38, no. 39, pp. 12709‒12717. https://doi.org/10.1021/bi9911280

4. Consonni R., Arosio I., Belloni B., Fogolari F., Fusi P., Shehi E., Zetta L. Investigations of Sso7d catalytic residues by NMR titration shifts and electrostatic calculations. Biochemistry, 2003, vol. 42, no. 6, pp. 1421‒1429. https://doi.org/10.1021/bi0265168

5. Granata V., Vecchio P. D., Barone G., Shehi E., Fusi P., Tortora P., Graziano G. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. International Journal of Biological Macromolecules, 2004, vol. 34, no. 3, pp. 195‒201. https://doi.org/10.1016/j.ijbiomac.2004.04.002

6. Shehi E., Serina S., Fumagalli G., Vanoni M., Consonni R., Zetta L., Dehò G., Tortora P., Fusi P. The Sso7d DNA-binding protein from Sulfolobus solfataricus has ribonuclease activity. FEBS Letters, 2001, vol. 497, no. 2‒3, pp. 131‒136. https://doi.org/10.1016/s0014-5793(01)02455-3

7. Guagliardi A., Napoli A., Rossi M., Ciaramella M. Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein. Journal of Molecular Biology, 1997, vol. 267, no. 4, pp. 841‒848. https://doi.org/10.1006/jmbi.1996.0873

8. Zhao H. L., Yao X. Q., Xue C., Wang Y., Xiong X. H., Liu Z. M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expression and Purification, 2008, vol. 61, no. 1, pp. 73‒77. https://doi.org/10.1016/j.pep.2008.04.013

9. Knapp S., Mattson P. T., Christova P., Berndt K. D., Karshikoff A., Vihinen M., Smith C. I., Ladenstein R. Thermal unfolding of small proteins with SH3 domain folding pattern. Proteins, 1998, vol. 31, no. 3, pp. 309‒319. https://doi.org/10.1002/(sici)1097-0134(19980515)31:3

10. Kruziki M. A., Bhatnagar S., Woldring D. R., Duong V. T., Hackel B. J. A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering. Chemical Biology, 2015, vol. 22, no. 7, pp. 946‒956. https://doi.org/10.1016/j.chembiol.2015.06.012

11. Napoli A., Zivanovic Y., Bocs C., Buhler C., Rossi M., Forterre P., Ciaramella M. DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus. Nucleic Acids Research, 2002, vol. 30, no. 12, pp. 2656‒2662. https://doi.org/10.1093/nar/gkf377

12. Gera N., Hill A. B., White D. P., Carbonell R. G., Rao B. M. Design of pH sensitive binding proteins from the hyperthermophilic Sso7d scaffold. PLoS One, 2012, vol. 7, no. 11. https://doi.org/10.1371/journal.pone.0048928

13. Loving G. S., Sainlos M., Imperiali B. Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends of Biotechnology, 2010, vol. 28, no. 2, pp. 73‒83. https://doi.org/10.1016/j.tibtech.2009.11.002

14. de Picciotto S., Dickson P. M., Traxlmayr M. W., Marques B. S., Socher E., Zhao S. [et al.]. Design Principles for SuCESsFul Biosensors: Specific Fluorophore Analyte Binding and Minimization of Fluorophore Scaffold Interactions. Journal of Molecular Biology, 2016, vol. 428, no. 20, pp. 4228‒4241. https://doi.org/10.1016/j.jmb.2016.07.004

15. Miller E. A., Traxlmayr M. W., Shen J., Sikes H. D. Activity-based assessment of an engineered hyperthermophilic protein as a capture agent in paper-based diagnostic tests. Molecular Systems Design and Engineering, 2016, vol. 1, no. 4, pp. 377‒381. https://doi.org/10.1039/c6me00032k

16. Shchur V. V., Burankova Y. P., Zhauniarovich A. I., Dzichenka Y. V., Usanov S. A., Yantsevich A. V. 5′-DMT-protected double-stranded DNA: Synthesis and competence to enzymatic reactions. Analytical Biochemistry, 2021, vol. 617, pp. 114‒115.

17. Gill S. C., Hippel P. H. von. Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 1989, vol. 182, no. 2, pp. 319‒326. https://doi.org/10.1016/0003-2697(89)90602-7

18. Edmondson S. P., Shriver J. W. DNA binding proteins Sac7d and Sso7d from Sulfolobus. Methods in Enzymology, 2001, vol. 334, pp. 129‒145. https://doi.org/10.1016/s0076-6879(01)34463-4

19. Shehi E., Granata V., Del Vecchio P., Barone G., Fusi P., Tortora P., Graziano G. Thermal stability and DNA binding activity of a variant form of the Sso7d protein from the archeon Sulfolobus solfataricus truncated at leucine 54. Biochemistry, 2003, vol. 42, no. 27, pp. 8362‒8368. https://doi.org/10.1021/bi034520t

20. Gera N., Hussain M., Wright R. C., Rao B. M. Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. Journal of Molecular Biology, 2011, vol. 409, no. 4, pp. 601‒616. https://doi.org/10.1016/j.jmb.2011.04.020

21. Zhao N., Spencer J., Schmitt M. A., Fisk J. D. Hyperthermostable binding molecules on phage: Assay components for point-of-care diagnostics for active tuberculosis infection. Analytical Biochemistry, 2017, vol. 521, pp. 59‒71. https://doi.org/10.1016/j.ab.2016.12.021


Review

Views: 399


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)