Quantum-chemical modeling, synthesis and properties of electrically conductive materials based on polyaniline
https://doi.org/10.29235/1561-8331-2025-61-3-183-195
Abstract
Quantum-chemical modeling of the polyaniline (PANI) molecule was performed. Methods for synthesizing PANI via oxidative polymerization were developed, and the morphology and physicochemical properties were comprehensively studied and optimized. Polymer-composite materials consisting of PANI and carbon-based materials within a PLA matrix were formed. According to cyclic voltammetry and impedance spectroscopy, these composites exhibit conductivities ranging from 0.10 to 25 S/cm, making them promising for use in various sensor devices in microand nanoelectronics, biomedicine, as well as in the development of anti-corrosion and antistatic coatings.
About the Authors
Zh. V. IhnatovichBelarus
Ihnatovich Zhanna V. – Ph. D. (Chemistry), Deputy Director
36 F. Skorinа Str., 220084, Minsk
L. N. Filippovich
Belarus
Filippovich Lyudmila N. – Ph. D. (Chemistry), Senior Researcher, Associate Professor. Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus
13, Surganov Str., 220072, Minsk
D. A. Danilova
Belarus
Danilova Darya A. – Junior Researcher
25, Filimonov Str., 220114, Minsk
S. N. Lemeshonok
Belarus
Lemeshonok Svetlana N. – Researcher
36, F. Skorina Str., 220084, Minsk
A. V. Рetkevich
Belarus
Petkevich Anna V. – Researcher
36, F. Skorina Str., 220084, Minsk
S. N. Shahab
Belarus
Shahab Siyamak N. – Dr. Sc. (Chemistry), Professor, Head of Department. Sakharov International State Ecological Institute BSU
23/1, Dolgobrodskaya Str., 220070, Minsk
A. A. Rogachev
Belarus
Rogachev Alexander A. – Corresponding Member, Dr. Sc. (Engineering), Professor, Director
36, F. Skorina Str., 220084 Minsk
References
1. Skotheim T. A., Reynolds J. R. (eds.). Conjugated Polymers. Processing and Applications. 3rd ed. Boca Raton, CRC Press, 2007. 656 p. https://doi.org/10.1201/b10739
2. Beygisangchin M., Abdul Rashid S., Shafie S., Sadrolhosseini A. R., Lim H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films–a review. Polymers, 2021, vol. 13, iss. 12, pp. 2003. https://doi.org/10.3390/polym13122003
3. Jain A., Nabeel A. N., Bhagwat S., Kumar R., Sharma S., Kozak D., Hunjet A., Kumar A., Singh R. Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 2023, vol. 9, no. 7, pp. 17611. https://doi.org/10.1016/j.heliyon.2023.e17611
4. Erol O., Uyan I., Hatip M., Yilmaz C., Tekinay A. B., Guler M. O. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, vol. 14, iss. 7, pp. 2433–2454. https://doi.org/10.1016/j.nano.2017.03.021
5. Sinha N., Ma J., Yeow J. T. W. Carbon nanotube-based sensors. Journal of Nanoscience and Nanotechnology, 2006, vol. 6, iss. 3, pp. 573–590. https://doi.org/10.1166/jnn.2006.121
6. Cochet M., Maser W. K., Benito A. M., Callejas M. A., Martínez M. T., Benoit J.-M., Schreiber J., Chauvet O. Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chemical Communications, 2001, vol. 16, pp. 1450–1451. https://doi.org/10.1039/B104009J
7. Almodarresiyeh H. A., Shahab S. N., Zelenkovsky V. M., Ariko N. G., Filippovich L. N., Agabekov V. E. Calculation of UV, IR, and NMR Spectra of Diethyl 2,2′-[(1,1′-Biphenyl)-4,4′-Diylbis(Azanediyl)]Diacetate. Journal of Applied Spectroscopy, 2014, vol. 81, no. 1, pp. 31–36. https://doi.org/10.1007/s10812-014-9882-0
8. Almodarresiyeh H. A., Shahab S. N., Zelenkovsky V. M., Agabekov V. E. Electronic Structure and Absorption Spectra of Sodium 2-Hydroxy-5-({2-Methoxy-4[(4-Sulfophenyl)Diazenyl]Phenyl}Diazenyl)Benzoate. Journal of Applied Spectroscopy, 2014, vol. 81, no. 1, pp. 161–163. https://doi.org/10.1007/s10812-014-9903-z
9. Shahab S., Sheikhi M., Filippovich L., Dikusar E. A., Yahyaei H. Quantum Chemical Modeling of New Derivatives of (E,E)-Azomethines: Synthesis, Spectroscopic (FT-IR, UV/Vis, Polarization) and Thermophysical Investigations. Journal of Molecular Structure, 2017, vol. 1137, pp. 335–348. https://doi.org/10.1016/j.molstruc.2017.02.056
10. Shahab S., Hajikolaee F. H., Filippovich L., Darroudi M., Loiko V. A., Kumar R., Borzehandani M. Y. Molecular structure and UV–Vis spectral analysis of new synthesized azo dyes for application in polarizing films. Dyes and Pigments, 2016, vol. 129, pp. 9–17. https://doi.org/10.1016/j.dyepig.2016.02.003
11. Sheikhi M., Shahab S., Filippovich L., Yahyaei H., Dikusar E., Khaleghian M. New derivatives of (E,E)-azomethines: Design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: Experimental and theoretical investigations. Journal of Molecular Structure, 2017, vol. 1152, pp. 368–385. https://doi.org/10.1016/j.molstruc.2017.09.108
12. Wan M. Absorption spectra of thin film of polyaniline. Journal of polymer science: Part A. Polymer Chemistry, 1992, vol. 30, pp. 543–549. https://doi.org/10.1002/pola.1992.080300404
13. Bhowmik K. L., Deb K., Bera A., Nath R. K., Saha B. Charge Transport through Polyaniline Incorporated Electrically Conducting Functional Paper. The Journal of Physical Chemistry C, 2016, vol. 120, no. 11, pp. 5855–5860. https://doi.org/10.1021/acs.jpcc.5b08650
14. Sagar R., Gaur M. S., Rogachev A. A. Nanoarchitecture of PANI/CNT/GO hybrid nanocomposites with enhanced dielectric and gas sensing properties. Polymer Bulletin, 2023, vol. 80, pp. 1773–1793. https://doi.org/10.1007/s00289-022-04127-z.
15. Novik K. A. Composites based on polyaniline, copolymers of polyaniline with o-anisidine and aniline-2-sulfonic acid, doped with nickel oxide nanoparticles. Polimernye kompozity i tribologiya (Polikomtrib-2022): sb. dokladov Mezhdunar. nauch.-tekhn. konf., 28-30 iyunya 2022 g. [Polymer composites and tribology (Polycomtrib-2022): Abstracts of the International scientific and technical conference]. Gomel, V. A. Belyi Metal-Polymer Research Institute of National Academy of Sciences of Belarus, 2022, pp. 151 (in Russian).
16. Andreeva O. A., Burkova L. A., Smirnov M. A., El’yashevich G. K. Correlation between IR spectra and electrical conductivity of polyethylene-polypyrrole composites. Polymer Science. Series B. Chemistry, 2006, vol. 48, no. 6, pp. 331–334 (in Russian). https://doi.org/10.1134/s1560090406110066
17. Goswami S., Maiti U. N., Maiti S., Mitra M. K., Chattopadhyay K. K. Polyaniline/Vanadium oxide composites: An effective control in morphology by varying reactant concentrations. Materials Chemistry and Physics, 2013, vol. 138, iss. 1, pp. 319–326. https://doi.org/10.1016/j.matchemphys.2012.11.063
18. Maruthi N., Faisal M., Raghavendra N., Prasanna B. P., Nandan K. R., Yogesh Kumar K., Prasad S. B. B. Polyaniline/ V2O5 composites for anticorrosion and electromagnetic interference shielding. Materials Chemistry and Physics, 2021, vol. 259, iss. 1, pp. 124059. https://doi.org/10.1016/j.matchemphys.2020.124059
19. Zou B.-X., Liang Y., Liu X.-X., Diamond D., Lau K.-T. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline сomposite. Journal of Power Sources, 2011, vol. 196, iss. 10, pp. 4842–4848. https://doi.org/10.1016/j.jpowsour.2011.01.073
20. Ragachev A. A., Yarmolenko M. A., Xiaohong J., Shen R., Luchnikov P. A., Rogachev A. V. Molecular structure, optical, electrical and sensing properties of PANI-based coatings with silver nanoparticles deposited from the active gas phase. Applied Surface Science, 2015, vol. 351, pp. 811–818. https://doi.org/10.1016/j.apsusc.2015.06.008
21. Sainz R., Benito A. M., Martínez M. T., Galindo J. F., Sotres J., Baró A. M., Corraze B., Chauvet O., Maser W. K. Soluble self-aligned carbon nanotube/polyaniline composites. Advanced Materials, 2005, vol. 17, iss. 3, pp. 278–281. https:// doi.org/10.1002/adma.200400921