Methods for monitoring the transfer and management of fertilizer components in ecosystems of the surface water–soil–groundwater type using the example of nitrate ion
https://doi.org/10.29235/1561-8331-2025-61-3-254-264
Abstract
The influence of applied fertilizers (manure, which is a fresh mixture of excrement and liquid or composted) on the properties of soils, ground and surface waters, as well as the general state of ecosystems of the water–soil–groundwater type were studied using the developed nitrate-selective sensors. Singleand double-layer microsensors based on conducting polymers (polypyrrole and bis-polyethylenedioxythiophene) made on the basis of a graphite rod have been developed and their suitability for monitoring the nitrate-ion content in natural ecosystems of the water–soil–underground water type has been evaluated.
About the Authors
A. A. Rat’koBelarus
Ratko Alexander A. – Ph. D. (Chemistry), Deputy Director
9/1, Surganov Str., 220072, Minsk
V. V. Shevchuk
Belarus
Shevchuk Vyacheslav V. – Correspondent member, D. Sc. (Chemistry), Head of Laboratory
9/1, Surganov Str., 220072, Minsk
N. P. Krut’ko
Belarus
Krutko Nikolay P. – Academician, D. Sc. (Chemistry), Professor, Head of the Department
9/1, Surganov Str., 220072, Minsk
References
1. Adamchuk V. I., Lund E. D., Sethuramanasmyraja B., Morgan M. T., Dobermann A., Marx D. B. Direct Measurement of Soil Chemical Properties on-the-go Using Ion-Selective Electrodes. Computers and Electronics in Agriculture, 2005, vol. 48, no. 3, pp. 272–294.
2. Rotiroti M., Sacchi E., Caschetto M., Zanotti C., Fumagalli L., Biasibetti M., Bonomi T., Leoni B. Groundwater and surface water nitrate pollution in an intensively irrigated system: Sources, dynamics and adaptation to climate change. Journal of hydrology, 2023, vol. 623, pp. 1–11.
3. Veenstra J., Nolen S., Carroll J., Ruiz C. Impact of net pen aquaculture on lake water quality. Water Science and Technology, 2003, vol. 47, no. 12, pp. 293–300.
4. Johnson R. D., Bachas L. G. Ionophore-based potentiometric and optical sensors. Analytical & Bioanalytical Chemistry, 2003, vol. 376, no. 3, pp. 328–341.
5. Hutchins R. S., Bachas L. G. Nitrate-selective electrode developed by electrochemically mediated/imprinted polypyrrole. Analytical Chemistry, 1995, vol. 67, no. 10, pp. 1654–1660.
6. Goff Th., Braven J., Ebdon L., Scholefield D. Automatic continuous river monitoring of nitrate using a novel ion-selective electrode. Journal of Environmental Monitoring, 2003, vol. 5, no. 2, pp. 353–358.
7. Lin P. K. T., Araujo A. N., Montenegro M. C. B. S. M., Olmos R. Perez. New PVC Nitrate-selective electrode: application to vegetables and mineral waters. Journal of Agricultural Food Chemistry, 2005, vol. 53, no. 2, pp. 211–215.
8. Egorov V. V., Rakhman’ko E. M., Rat’ko A. A. Anion-selective electrodes with liquid membranes. Encyclopedia of Sensors, 2006, vol. 1, section A, pp. 211–241.
9. Nakamoto T., Ishida H. Chemical sensing in spatial/temporal domains. Chemical reviews, 2008, vol. 108, no. 2, pp. 680–704.
10. Shirakawa H., Louis E. J., Macdiarmid A. G., Chiang C. K., Heeger A. J. Synthesis of electrically conducting polymers. Journal of the Chemical Society, Chemical Communications, 1977, iss. 16, pp. 578–580. https://doi.org/10.1039/C39770000578
11. Ivaska A. Analytical applications of conducting polymers. Electroanalysis, 1991, vol. 3, no. 4–5, pp. 247–254.
12. Cadogan A., Lewenstam A., Ivaska A. Anionic responses of electrochemically synthesized polypyrrole films. Talanta, 1992, vol. 39, no. 6, pp. 617–620.
13. Imisides M. D., John R., Riley P. J., Wallace G. G. The use of electropolymerization to produce new sensing surfaces: a review emphasizing electrode position of heteroatomic compounds. Electroanalysis, 1991, vol. 3, no. 9, pp. 879–889. https://doi.org/10.1002/elan.1140030903
14. Migdalski J., Blaz T., Lewenstam A. Conducting polymer based ion-selective electrodes. Analytica Chimica Acta, 1996, vol. 322, no. 3, pp.141–149.
15. Hatchett D. W., Josowicz M. Composites of intrinsically conducting polymers as sensing nanomaterials. Chemical Reviews, 2008, vol. 108, no. 2, pp. 746–769.
16. Cebeci F. C., Sezer E., Sarac A. Sezai. Synthesis and electrochemical characterization of bis(3,4-ethylenedioxythiophene)(4,4’-dinonyl-2,2’-bithiazole) comonomer. Electrochimica Acta, 2007, vol. 52, no. 5, pp. 2158–2165.
17. Bendikov T. A., Harmon T. C. Development and environmental application of a nitrate selective microsensor based on doped polypyrrole films. Sensors & Actuators B: Chemical, 2005, vol. 106, no. 2, pp. 512–517.
18. Bendikov T. A., Miserendino S., Tai Y.-C., Harmon T. C. A parylene-protected nitrate-selective microsensor on a carbon fiber cross-section. Sensors & Actuators B: Chemical, 2007, vol. 123, no. 1, pp. 127–134. https://doi.org/10.1016/j.snb.2006.08.007
19. Sotzing G. A., Reynolds J. R., Steel P. J. Poly(3,4ethylenedioxythiophene) (PEDOT) prepared via electrochemical polymerization of EDOT, 2,2’-Bis(3,4-ethylenedioxythiophene) (BiEDOT), and their TMS derivatives. Advanced Materials, 1997, vol. 9, no. 10, pp. 795–798.
20. David I. G., Popa D. E., Buleandra M. Pencil graphite electrodes: a versatile tool in electroanalysis. Journal of Analytical Methods in Chemistry, 2017, vol. 2017, art. ID 1905968, pp. 1–22. http://dx.doi.org/10/1155/2017/1905968
21. Tavares P. H. C. P., Barbeira P. J. S. Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes. Journal of Applied Electrochemistry, 2008, vol. 38, no. 6, pp. 827–832.
22. Bobacka J., Ivaska A., Lewenstam A. Potentiometric ion sensors based on conducting polymers. Electroanalysis, 2003, vol. 15, no. 5–6, pp. 366–374.
23. Bobacka J. Conducting polymer based ion-selective electrodes. Electroanalysis, 2006, vol. 18, no. 1, pp. 7–18.