Role of purine and pyrimidine nucleosides and their derivatives in reactions catalyzed by pancreatic phospholipase A2
https://doi.org/10.29235/1561-8331-2022-58-1-105-128
Abstract
A review of the results of studying the relationship in the system “nucleosides–phospholipase A2”, which plays a decisive role in the metabolism of phospholipids and their derivatives – prostaglandins, thromboxanes and leukotrienes as the most important intracellular messengers, is presented. The review considers the effect of nucleosides on the activity of secretory PLA2 and the metabolism of liponucleosides, which are of interest as specific delivery vehicles for nucleoside drugs. The results of these studies are considered from the point of view of the pharmacological potential of liponucleosides as new forms of known drugs.
About the Author
N. M. LitvinkoBelarus
Litvinko Natalia M. – D. Sc. (Chemistry), Associate Professor, Head of the laboratory
5/2, Kuprevich Str., 220141, Minsk
References
1. Brockerhoff H., Jensen R. G. Lipolytic enzymes. New York, Academic Press, 1974. 330 p. https://doi.org/10.1016/B978-0-12-134550-1.X5001-1
2. Mouchlis V. D., Dennis E. A. Phospholipase A2 catalysis and lipid mediator lipidomics. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2019, vol. 1864, no. 6, pp. 766–771. https://doi.org/10.1016/j.bbalip.2018.08.010
3. Zimmermann H. Extracellular ATP and other nucleotides–ubiquitous triggers of intercellular messenger release. Purinergic. Signal. 2016, vol. 12, no. 1, pp. 25–57. https://doi.org/10.1007/s11302-015-9483-2
4. Hong С. I., Nechaev A., Kirisits A. J., Vig R., West C. R., Manouilov K. K., Chu C. K. Nucleoside conjugates. Synthesis and biological activity of anti-HIV7 nucleoside conjugates of ether and thioether phospholipids. Journal of Medicinal Chemistry, 1996, vol. 39, no. 9, pp. 1771–1777. https://doi.org/10.1021/jm950620o
5. Tsybulskaya I. A., Kulak T .I., Buravskaya T. N., Golubeva M. B., Shabunya P. S., Fatykhova S. A., Kurman P. V., Kalinichenko E. N. Pharmacokinetic properties and the enzymatic hydrolysis of diacylglyce-rophosphate fludarabine derivatives. Doklady Natsional`noi akademii nauk belarusi = Dokladyof the National Academy of Sciences of Belarus, 2016, vol. 60, no. 1, pp. 65–71 (in Russian).
6. Oleynikova I. A., Kulak T. I., Bolibrukh D. A., Kalinichenko E. N. Synthesis of phospholipid_ribavirin conjugates. Helvetica Chimica Acta, 2013, vol. 96, no. 3. 46, pp. 463–472. https://doi.org/10.1002/hlca.201200203
7. Steim J. M., Neto C. C., Sarin P. S., Sun D. K., Sehgal R. K., Turcotte J. G. Lipid conjugates of antiretroviral agents. I. Azidothymidine-monophosphate-diglyceride: anti-HIV7 activity, physical properties, and interaction with plasma proteins. Biochemical and Biophysical Research Communications, 1990, vol. 171, no. I, pp. 451–457. https://doi.org/10.1016/0006-291x(90)91414-n
8. Hostetler К. Y., Carson D. A., Richman D. D. Phosphatidylazidothymidine. Mechanism of antiretroviral action in CEM cells. Journal of Biological Chemistry, 1991, vol. 266, no. 18, pp. 11714–11717. https://doi.org/10.1016/s0021-9258(18)99015-0
9. Kucera G. L., Goff C., Iyer N., Morrisnatschke S., Ishaq K., Wyrick S., Fleming R., Kucera L. Cellular metabolism in lymphocytes of a novel thioether-phospholtpid-AZT conjugate with anti-HIV-1 activity. Antiviral Research, 2001, vol. 50, no. 2, pp. 129–137. https://doi.org/10.1016/s0166-3542(01)00137-1
10. Kalinichenko E. N., Mikhailopulo I. А.,, Litvinko N. М., Zinchenko A. I., Petrov P. T. Chemical-enzymatic modification of nucleic acid components and biochemical modeling as a scientific and practical basis for the search, creation and production of antiviral and antitumor drugs. Vestnik Fonda fundamental’nykh issledovanii = Bulletin of the foundation for fundamental research, 2006, no. 3, pp. 32–57 (in Russian).
11. Vladimirov V. G., Sergienko V. I. Acute pancreatitis. Experimental clinical research. Moscow, Meditsina Publ., 1986. 240 p. (in Russian).
12. Masuda S., Murakami M., Komiyama K., Ishihara M., Ishikawa Y., Ishii T., Kudo I. Various secretory phospholipase A2 enzymes are expressed in rheumatoid arthritis and augment prostaglandin production in cultured synovial cells. FEBS Journal , 2005, vol. 272, no. 3, pp. 655–672. https://doi.org/10.1111/j.1742-4658.2004.04489.x
13. Kudo I., Murakami M. Phospholipase A2 enzymes. Prostaglandins & Other Lipid Mediators, 2002, vol. 68–69, pp. 3–58. https://doi.org/10.1016/s0090-6980(02)00020-5
14. Miyashita A., Crystal R. G., Hay J. G. Identification of a 27 bp 5’-flanking region element responsible for the low level constitutive expression of the human cytosolic phospholipase A2 gene. Nucleic Acids Research, 1995, vol. 23, no. 2, pp. 293– 301. https://doi.org/10.1093/nar/23.2.293
15. Lambeau G., Lazdunski M. Receptors for a growing family of secreted phospholipases A2. Trends in Pharmacological Sciences, 1999, vol. 20, no. 4, pp. 162–170. https://doi.org/10.1016/s0165-6147(99)01300-0
16. Kuwata H., Yamamoto S., Miyazaki Y., Shimbara S., Nakatani Y., Suzuki H., Ueda N., Yamamoto S., Murakami M., Kudo I. Studies on a mechanism by which cytosolic phospholipaseA2 regulates the expression and function of type IIA secretory phospholipase A2. The Journal of Immunology, 2000, vol. 165, no. 7, pp. 4024–4031. https://doi.org/10.4049/jimmunol.165.7.4024
17. Bany B. M., Schultz G. A., Kennedy T. G. Regulation of cytosolic phospholipase A2 in rat endometrial stromal cells: the role of epidermal growth factor. Molecular Reproduction and Development, 1999, vol. 52, no. 4, pp. 335–340. https://doi.org/10.1002/(sici)1098-2795(199904)52:4<335::aid-mrd1>3.0.co;2-f
18. Verheij H. M., Slotboom A. J., de Haas G. H. Structure and function of phospholipase A2. Reviews of physiology, biochemistry and pharmacology, 1981, vol. 91, pp. 91–203.
19. Nakano T., Ohara O., Teraoka H., Arita H. Group II phospholipase A2 mRNA synthesis is stimulated by two distinct mechanisms in rat vascular smooth muscle cells. FEBS Letters, 1990, vol. 261, no. 1, pp. 171–174. https://doi.org/10.1016/0014-5793(90)80663-4
20. Rogero M. M., de C. Leão M., Santana T. M., de M. B. Pimentel M. B., Carlini G. C. G., da Silveira T. F. F., Gonçalves R. C., Castro I. A. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radical Biology and Medicine, 2020, vol. 156, pp. 190–199. http:doi.org/10.1016/j.freeradbiomed.2020.07.005
21. Barberis E., Timo S., Amede E., Vanella V. V., Puricelli Ch., Cappellano G., Raineri D., Cittone M. G., Rizzi E., Pedrinelli A. R., Vassia V., Casciaro F. G., Priora S., Nerici I., Galbiati A., Hayden E., Falasca M., Vaschetto R., Sainaghi P. P., Dianzani U., Rolla R., Chiocchett A., Baldanzi G., Marengo E., Manfredi M. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2. International Journal of Molecular Sciences, 2020, vol. 21, pp. 8623–8648. https://doi.org/10.3390/ijms21228623
22. Litvinko N. М. Inhibition of phospholipases А2andС. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2005, no. 4, pp. 113–124 (in Russian).
23. Litvinko N. M., Khurgin Yu. I., Kaverzneva E. D. Anionic center of porcine pancreatic phospholipase A2. Biochemistry (Moscow), 1977, vol. 42, no. 1, pp. 85–94 (in Russian).
24. Nikolaou A., Kokotou M. G., Vasilakaki S., Kokotos G. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A2. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 2019, vol. 1864, no. 6, pp. 941–956. https://doi.org/10.1016/j.bbalip.2018.08.009
25. Pedada S. R. Yarla N. S., Tambade P. J., Dhananjaya B. L., Bishayee A., Arunasree K. M., Philip G. H., Dharmapuri G., Aliev G., Putta S., Rangaiah G. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. European Journal of Medicinal Chemistry, 2016, vol. 112, pp. 289–297. https://doi.org/10.1016/j.ejmech.2016.02.025
26. Giordanetto F., Pettersen D., Starke I., Nordberg P., Dahlström M., Knerr L., Selmi N., Rosengren B., Larsson L-O., Sandmark J., Castaldo M., Dekker N., Karlsson U., Hurt-Camejo E. Discovery of AZD2716: a novel secreted phospholipase A2 (sPLA2) inhibitor for the treatment of coronary artery disease. ACS Medicinal Chemistry Letters, 2016, vol. 7, no. 10, pp. 884–889. https://doi.org/10.1021/acsmedchemlett.6b00188
27. Vasilakaki S., Barbayianni E., Leonis G., Papadopoulos M. G., Mavromoustakos T., Gelb M. H., Kokotos G. Development of a potent 2-oxoamide inhibitor of secreted phospholipase A2 guided by molecular docking calculations and molecular dynamics simulations. Bioorganic & Medicinal Chemistry, 2016, vol. 24, no. 8, pp. 1683–1695. https://doi.org/10.1016/j.bmc.2016.02.040
28. Vasilakaki S., Barbayianni E., Magriot, V., Pastukhov O., Constantinou-Kokotou V., Huwiler A., Kokotos G. Inhibitors of secreted phospholipase A2 suppress the release of PGE2 in renal mesangial cells. Bioorganic & medicinal chemistry, 2016, vol. 24, no. 13, pp. 3029–3034. https://doi.org/10.1016/j.bmc.2016.05.017
29. Alasmary F., Alnahdi F. S., Ben Bacha A., El-Araby A. M., Moubayed N., Alafeefy A. M., El-Araby M. E. New quinoxalinone inhibitors targeting secreted phospholipase A2 and α-glucosidase. Journal of enzyme inhibition and medicinal chemistry, 2017, vol. 32, no. 1, pp. 1143–1151. https://doi.org/10.1080/14756366.2017.1363743
30. Joshi V., Umashankara M., Ramakrishnan C., Nanjaraj Urs A. N., Suvilesh K. N., Velmurugan D., Rangappa K. S., Vishwanath B. S. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Archives of biochemistry and biophysics, 2016, vol. 598, pp. 28–39. https://doi.org/10.1016/j.abb.2016.04.003
31. Joshi V., Venkatesha S. H., Ramakrishnan C., Nanjaraj Urs A. N., Hiremath V., Moudgil K. D., Velmurugan D., Vishwanath B. S. Celastrol modulates inflammation through inhibition of the catalytic activity of mediators of arachidonic acid pathway: secretory phospholipase A2 group IIA, 5-lipoxygenase and cyclooxygenase-2. Pharmacological Research, 2016, vol. 113, pp. 265–275. https://doi.org/10.1016/j.phrs.2016.08.035
32. Lee Y., Lee W., Kim J., Bae J-S. Inhibitory effect of sulforaphane on secretory group IIA phospholipase A2. International Journal of Pharmacology, 2018, vol. 14, pp. 187–193. https://doi.org/10.3923/ijp.2018.187.193
33. Assogbaa L., Ahamada-Himidia A., Meddad-Bel Habicha N., Aouna D., Bouklia L., Massicota F., Mounierc C. M., Hueta J., Lamouri A., Ombetta J.-E., Godfroid J.-J., Donga, C.-Z., Heymans F. Inhibition of secretory phospholipase A2. 1-Design, synthesis and structure–activity relationship studies starting from 4-tetradecyloxybenzamidine to obtain specific inhibitors of group II sPLA2s. European Journal of Medicinal Chemistry, 2005, vol. 40, no. 9, pp. 850–861. https://doi.org/10.1016/j.ejmech.2005.03.027
34. Litvinko N. М., Kuchuro S. V., Zheldakova T. A., Lis L. G., Filich E. R., Kuzmitskii B. B., Shulyak V. N. A correlation between prostaglandin analogs effect on phospholipase A2 and their biological activity. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 1998, no. 4, pp. 101–113 (in Russian).
35. Kuchuro S. V., Rakhuba G. N., Rubinov D. B., Zheldakova T. A., Babitskaya S. V., Litvinko N. M. 3,5-disubstituted thiotetronic acid derivatives – new inhibitors of secretor phospholipases A2. Doklady Natsional`noi akademii nauk belarusi = Dokladyof the National Academy of Sciences of Belarus, 2004, vol. 48, no. 1, pp. 65–69 (in Russian).
36. Dennis E., Yaksh T., Lucas K. K., Svensson C., Six D. A., Kokotos G., Constantinou-Kokotou V. Compositions and methods for inhibition of phospholipase A2 mediated inflammation. Patent USA, no. 7745489B2, 2010.
37. Seehra J. S., Kaila N., Mckew J. S., Lovering F., Bemis J. E., Xiang Y. Phospholipase inhibitors. Patent USA, no. 20030153751A1, 2003.
38. Nicolaou A., Kokotou M. G., Vasilakaki S. G., Kokotos. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipase A2. BBA –Molecular and Cell Biology of Lipids, 2019, vol. 1864, no. 6, pp. 941– 956. https://doi.org/10.1016/j.bbalip.2018.08.009
39. Mouchlis V. D., Limnios D., Kokotou M. G., Barbayianni E., Kokotos G., McCammon J. A., Dennis E. A. Development of potent and selective inhibitors for group VIA calcium-independent phospholipase A2 guided by molecular dynamics and structure-activity relationships. Journal of medicinal chemistry, 2016, vol. 59, no. 9, pp. 4403–4414. https://doi.org/10.1021/acs.jmedchem.6b00377
40. Mouchlis V. D., Dennis E. A. Phospholipase A2 catalysis and lipid mediator lipidomics. BBA – Molecular and Cell Biology of Lipids, 2018, vol. 1864, no. 6, pp. 766-771. https://doi:10.1016/j.bbalip.2018.08.010
41. Litvinko N. M., Kuchuro S. V., Gerlovsky D. O., Kalinichenko E. N., Farina A. V. Screening of the effect of acyclovir phosphate analogues on the lipolytic reaction with pancreatic PLA2 participation. Sovremennoe sostoyanie i perspektivy razvitiya mikrobiologi i biotekhnologii: sb. materialov mezhdunar. nauch. konf. [Current state and prospects for the development of microbiology and biotechnology: collection of materials of the international. scientific. conf.]. Minsk, 2008, vol. 2, pp. 17–19 (in Russian).
42. Litvinko N. M., Kuchuro S. V., Rakhuba G. N., Skorostetskaya L. A., Kalinichenko E. N., Zhernosek E. V. Effect of phospholipases on chimeric substrates based on phospholipids and nucleic acid components. Doklady Natsional`noi akademii nauk belarusi = Dokladyof the National Academy of Sciences of Belarus, 2005, vol. 49, no. 4, pp. 70–73 (in Russian).
43. Sheridan A. M., Sapirstein A., Lemieux N., Martin B. D., Kim D. K., Bonventre, J. V. Nuclear translocation of cytosolic phospholipase A2 is induced by ATP depletion. Journal of Biological Chemistry, 2001, vol. 276, no. 32, pp. 29899– 29905. https://doi.org/10.1074/jbc.m103758200
44. Lykidis A., Baburina I., Jackowski S. Distribution of CTP: phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant. Journal of Biological Chemistry, 1999, vol. 274, no. 38, pp. 26992–27001. https://doi.org/10.1074/jbc.274.38.26992
45. Baburina I., Jackowski S. Cellular responses to excess phospholipids. Journal of Biological Chemistry, 1999, vol. 274, no. 14, pp. 9400–9408. https://doi.org/10.1074/jbc.274.14.9400
46. Adibhatla R. M., Hatcher J. F., Larsen E. C., Chen X., Sun D., Tsao F. H. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. Journal of Biological Chemistry, 2006, vol. 281, no. 10, pp. 6718–6725. https://doi.org/10.1074/jbc.M512112200
47. McHowat J., Creer M. H. Thrombin activates a membrane-associated calcium-independent PLA2 in ventricular myocytes. American Journal of Physiology-Cell Physiology, 1998, vol. 274, no. 2, pt 1, pp. 447–454. https://doi.org/10.1152/ajpcell.1998.274.2.C447
48. Hazen S. L., Gross R. W. ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. Journal of Biological Chemistry, 1991, vol. 266, no. 22, pp. 14526–14534. https://doi.org/10.1016/S0021-9258(18)98718-1
49. Hazen S. L., Gross R. W. Human myocardial cytosolic Ca(2+)-independent phospholipase A2 is modulated by ATP. Concordant ATP-induced alterations in enzyme kinetics and mechanism-based inhibition. Biochemical Journal, 1991, vol. 28, no. 3, pp. 581–587. https://doi.org/10.1042/bj2800581
50. Ackermann E. J., Conde-Frieboes K., Dennis E. A. Inhibition of macrophage Ca(2+)-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. Journal of Biological Chemistry, 1995, vol. 270, no. 1, pp. 445–450. https://doi.org/10.1074/jbc.270.1.445
51. Ackermann E. J., Kempner E. S., Dennis E. A. Ca(2+)-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. Journal of Biological Chemistry, 1994, vol. 269, no. 12, pp. 9227–9233. https://doi.org/10.1016/S0021-9258(17)37098-9
52. Litvinko N. M., Drozhdenok A. P. Complexation of phospholipase A2 with nucleic acid fragments and methods for their elimination. Prikladnaya biokhimiya i mikrobiologiya [Applied Biochemistry and Microbiology], 1996, vol. 32, no. 6, pp. 650–655 (in Russian).
53. Litvinko N. М., Kuchuro S. V., Zheldakova Т. А., Filich Е. R. Method for determining the effector properties of physiologically active compounds. Patent BY, no. 5752, 2004 (in Russian).
54. Lyakh A. V., Litvinko N. M., Mikhailopulo I. A., Gerlovsky D. O. PLA2 Activity in the Presence of Modified Nucleoside Analogs. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Biotekhnologii mikroorganizmov», posvyashchennoi professoru Yu. K. Fomichevu (1929–2015) [Materials of the International Scientific and Practical Conference “Biotechnology of Microorganisms” dedicated to Professor Yu. K. Fomichev (1929–2015)]. Minsk, 2019, pp. 368–370 (in Russian).
55. Litvinko N. M., Gerlovsky D. O., Kuchuro S. V., Kalinichenko E. N., Kulak T. I., Oleinikova I. A. Effect of ribavirin derivatives on catalysis of lipolytic reactions. Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem: sbornik nauchnykh trudov IX s’ezda Belorusskogo obshchestvennogo ob’edineniya fotobiologov i biofizikov, 23–25 iyunya 2010 g. [Molecular, membrane and cellular bases of the functioning of biosystems: collection of scientific papers of the IX Congress of the Belarusian Public Association of Photobiologists and Biophysicists, June 23–25, 2010]. Minsk, 2010, pp. 240–242 (in Russian).
56. Remeeva Е. А., Artsemyeva J. N Enzymatic synthesis of trans-zeatin riboside and determination of its effector properties in relation to phospholipase А2. Molodezh’ v nauke – 2020: tez. dokl. XVII Mezhdunar. konf. molodykh uchenykh [Youth in science: Book of abstracts, XVII Int. conf. young scientists]. Minsk, 2020, pp. 542–545 (in Russian).
57. Drenichev M. S., Oslovsky V. E., Mikhailov S. N. Cytokinin nucleosides-natural compounds with a unique spectrum of biological activities. Current topics in medicinal chemistry, 2016, vol. 16, no. 23, pp. 2562–2576. https://doi.org/10.2174/1568026616666160414123717
58. Shevchenko G. V., Karavaiko N. N., Selivankina S. Y., Zubkova N. K., Kupriyanova E. V., Los D. A., Kusnetsov V. V., Kulaeva O. N. Possible involvement of cyanobacteria in the formation of plant hormonal system. Fiziologiya rastenii = Russian Journal of Plant Physiology, 2014, vol. 61, no. 2, pp. 170–176 (in Russian).
59. Natural trans-zeatin-riboside 98% Min Cytokinin. Available at: https://offer.alibaba.com/product. (accessed 08 June 2020) (in Russian).
60. Skorostetskaya L. A., Gerlovsky D. O., Remeeva E. A., Artsemyeva J. N., Vasilevskaya E. D., Birichevskaya L. L., Vinter M. A., Zinchenko A. I., Mikhailopulo I. A., Litvinko N. M. Study of the action of uridine on pancreatic PLA2 by differential spectroscopy. Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem: sb. tr. XlV s”ezda Bel. obshch. ob”ed. fotobiologov i biofizikov [Molecular, membrane and cellular bases of the functioning of biosystems: collection of articles. XIV Congress of the Belarusian Public Association of Photobiologists and Biophysicists]. Minsk, Belarusian State University, 2020, pp. 43 (in Russian).
61. Deems R. A., Eaton B. R., Dennis E. A. Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implications for the study of lipolytic enzymes. Journal of Biological Chemistry, 1975, vol. 250, no. 23, pp. 9013–9020. https://doi.org/10.1016/S0021-9258(19)40687-X
62. Verheij H. M., Egmond M. R., De Haas G. H. Chemical Modification of the alpha–Amino Group in Snake Venom Phospholipases A2. A Comparison of the Interaction of Pancreatic and Venom Phospholipases with Lipid–Water Interfaces. Biochemistry, 1981, vol. 20, no. 3, pp. 94–99. https://doi.org/10.1021/bi00504a016
63. Litvinko N. М. Inhibition of phospholipase A2 by virazole derivatives. Doklady Natsional`noi akademii nauk belarusi = Dokladyof the National Academy of Sciences of Belarus, 2021, vol. 65, no. 3, pp. 309–319 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-3-309-319
64. Litvinko N. М. Activity of phospholipases A2 and C in biochemical modeling. Minsk, Technoprint Publ., 2003. 350 p. (in Russian).
65. Novozhilova T. I., Malkin S. I., Kozhukhov V. I., Kruglyak Yu. L., Kurochkin V. K. Decomposition of phosphatidylnucleosides under the action of phospholipases. Bioorganicheskaya khimiya = Russian Journal of Bioorganic Chemistry, 2000, vol. 26, no. 3, pp. 238–240 (in Russian).
66. ZhernosekЕ. V., Kalinichenko E. N., Litvinko N. М., Kuchuro S. V., Rakhuba G. N. Synthesis of conjugates of phosphatidic acid with modified components of nucleic acids and their sensitivity to the action of phospholipase A2. Khimicheskie reaktivy, reagenty i protsessy malotonnazhnoi khimii: XVIII Mezhdunar. nauch.-tekhnich. konf. [Chemical reagents, reagents and low-tonnage chemistry processes; XVIII Int. scientific and technical conf.]. Minsk, 2005, pp. 33 (in Russian).
67. Kalinichenko E. N., Zhernosek Е. V., Litvinko N. М., Kuchuro S. V., Rakhuba G. N. Synthesis of 2’, 3’-dideoxycytidine-5’-monophosphate-phosphatidylethanolamine – phosphoramidate and its interaction with phospholipase A2. Khimiya i biologicheskaya aktivnost’ azotsoderzhashchikh geterotsiklov: sb. tr. 3-i mezhdunar. konf. [Chemistry and Biological Activity of Nitrogen-Containing Heterocycles: 3rd Intern. conf.]. Chernogolovka, 2006 (in Russian).
68. Litvinko N. М., Kuchuro S. V., Rakhuba G. N., Kalinichenko E. N., Zhernosek Е. V. Pharmaceutical drug forms of new generations and their sustainability. Sakharovskie chteniya 2006 g.: ekologicheskie problemy KhKhI veka: sb. tr. 6-i mezhdunar. nauch. konf. [Sakharov Readings 2006: Environmental Problems of the XXI Century: 6th Int. scientific. conf.]. Minsk, 2006 (in Russian).
69. Litvinko N. М., Kuchuro S. V., Rakhuba G. N., Kalinichenko Е. N., Zhernosek Е. V. Effect of modification of the ethanolamine fragment of the substrate on the activity of pancreatic phospholipase А2. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2006, no. 3, pp. 79–82 (in Russian).
70. Litvinko N. М., Kalinichenko Е. N., Zhernosek Е. V., Kuchuro S. V. Phospholipid modified by 2 ‘, 3’-dideoxyuridine, pharmaceutical composition and antidote to the action of cobra venom. Patent BY, no. 11904, 2009 (in Russian).
71. Litvinko N. М., Kalinichenko Е. N., Zhernosek Е. V., Kuchuro S. V. Conjugate of a phospholipid with a modified nucleoside, a pharmaceutical composition and an agent that increases resistance to the action of pancreatic phospholipase А2. Patent BY, no. 11905, 2009 (in Russian).
72. Gerlovsky D. О., Remeeva Е. А., Artsemyeva J. N., Vasilevskaya E. D., Birichevskaya L. L., Vinter М. А., Zinchenko A. I., Mikhailopulo I. А., Litvinko N. М. Stability of diacylglycerophosphate derivatives of nucleosides in relation to pancreatic PLA2. Belorusskie lekarstva: materialy konf. [Belarusian medicines: conference materials]. Minsk, 2019, pp. 38–41 (in Russian).
73. Remeeva Е. А., Artsemyeva J. N., Vasilevskaya E. D., Vinter М. А. Phospholipase A2 activity towards phospholipid conjugates. Molodezh’ v nauke – 2019: tez. dokl. XVI Mezhdunar. konf. molodykh uchenykh, g. Minsk, 14–17 oktyabrya 2019 g. [Youth in Science - 2019: Abstracts of the XVI International Conference of Young Scientists, Minsk, October 14–17, 2019]. Minsk, NAS of Belarus, 2019, pp. 556–558 (in Russian).
74. Litvinko N. M., Remeeva E. A., Artsemyeva J. N., Zinchenko A. I., Gerlovsky D. O., Birichevskaya L. L., Pavluchenko N. I., Mikhailopulo I. A. The enzymatic synthesis of Phospholipide-Nucleoside conjugates and study of their substrate activity for the digestive phospholipase A2. Journal of Nanotechnoligy: Nanomedicine & Nanobiotechnology, 2020, vol. 7, pp. 55–56.
75. Gerlovsky D. О., Remeeva Е. А., Artsemyeva J. N., Vasilevskaya E. D., Birichevskaya L. L., Vinter М. А., Zinchenko A. I., Mikhailopulo I. А., Litvinko N. М. Hydrolysis of phosphatidylbrivudine under the action of pancreatic PLA2. Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem : tez. dokl. mezhdunar. nauch. konf., Chetyrnadtsatogo s”ezda Belorus. obshchestv. ob-niya fotobiologov i biofizikov, Belarus’, Minsk, 17–19 iyunya 2020 g. [Molecular, Membrane and Cellular Basis for the Functioning of Biosystems: abstract. report intl. scientific Conf., Fourteenth Congress Belorus. societies. Society of Photobiologists and Biophysicists, Belarus, Minsk, June 17–19, 2020]. Minsk, Belarusian State University, 2019, pp. 207 (in Russian)